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Abstract

In this paper, we introduce an approach for constructing uncertainty sets for robust optimization

using new deviation measures for bounded random variables known as the forward and backward de-

viations. These deviation measures capture distributional asymmetry and lead to better approxima-

tions of chance constraints. We also propose a tractable robust optimization approach for obtaining

robust solutions to a class of stochastic linear optimization problems where the risk of infeasibility

can be tolerated as a tradeoff to improve upon the objective value. An attractive feature of the

framework is the computational scalability to multiperiod models. We show an application of the

framework for solving a project management problem with uncertain activity completion time.
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1 Introduction

In recent years, robust optimization has gained substantial popularity as a competing methodology for

solving several types of stochastic optimization models. Robust optimization has been successful in im-

munizing uncertain mathematical optimization. The first step in this direction is taken by Soyster [24]

who proposes a worst case model to linear optimization. Subsequently, more elaborate uncertainty sets

and computationally attractive robust optimization methodologies are proposed by Ben-Tal and Ne-

mirovski [2, 3, 4], El-Ghaoui et al. [16, 17], Iyangar and Goldfarb [18], Bertsimas and Sim [9, 10, 11, 12]

and Atamtürk [1]. To address the issue of over-conservatism in robust linear optimization, these papers

propose less conservative models by considering uncertainty sets in the form of ellipsoidal and more

complex intersection of ellipsoidal sets. The robust counterparts of the nominal problems generally are

in the form of conic quadratic problems (see Ben-Tal and Nemirovski [4]) and even linear optimization

problems of slightly larger size (see Bertsimas and Sim [10]). Examples of using ellipsoidal random pa-

rameter domains also appear in stochastic optimization that focuses on exact and approximate solutions

to chance constraints for specific distributions (see, for instance, Kibzun and Kan [21]).

The methodology of robust optimization has also been applied to dynamic settings involving multi-

period optimization in which future decisions (recourse variables) depend on the realization of present

data. Such models are in general intractable. Ben-Tal et al. [5] propose a tractable approach for solving

fixed recourse instances under affine restrictions on the recourse variables with respect to the uncertain

data. Some applications of robust optimization on dynamic environment include inventory management

(Bertsimas and Thiele [13], Ben-Tal et al. [5]) and supply contracts (Ben-Tal et al. [6]).

There are two important characteristics of robust linear optimization that are practically appealing.

(a) Robust linear optimization models are polynomial in size and in the form of linear programming or

second order cone programming (SOCP). We could leverage on the state-of-the-art LP and SOCP

solvers, which are increasingly becoming more powerful, efficient and robust.

(b) Robust optimization requires mild assumptions on distributions, such as known mean and bounded

support. This relieves users from having to know the probabilistic distributions of the underlying

stochastic parameters, which are often unavailable.

Despite its tractability, one of the main criticisms of robust optimization has been its inability to in-

corporate any available distributional information to achieve better performance. In linear optimization,

Bertsimas and Sim [10] and Ben-Tal and Nemirovski [4] obtain probability bounds against constraint

violation by assuming that the coefficients are independent and symmetrically bounded and neglecting
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any deviational information of the random variables. For instance, in cases where the variances of the

random variables are small while the support of the distributions are wide, the robust solutions ob-

tained via this approach can be rather conservative. The assumption of symmetric distribution is also

limiting in many applications such as financial modeling in which distributions are often known to be

asymmetric.

Our goal of this paper is two-folded. First, we refine the framework for robust linear optimization

by introducing a new uncertainty set that captures the asymmetry of the underlying random variables.

For this purpose, we introduce new deviation measures associated with a random variable, namely the

forward and backward deviations and apply to the design of uncertainty set. Hence, this enables us to

capture the asymmetry of random variables in order to obtain better solutions that satisfy probabilistic

or chance constraints. Our robust linear optimization framework generalizes previous works of Bertsimas

and Sim [10] and Ben-Tal and Nemirovski [4]. Second, we propose a tractable robust optimization

approach for solving a class of stochastic linear optimization problems with chance constraints. Again,

applying the forward and backward deviations of the underlying distributions, our robust optimization

approach provides feasible solutions to the stochastic linear optimization. The optimal solution from

our model is an upper bound to the minimum objective value for all underlying distributions that satisfy

the parameters of deviations. An attractive feature of this framework is the computational scalability

to multiperiod models. We emphasize that literatures on multiperiod stochastic programs with chance

constraints are rather limited, which could be due to the lack of tractable methodologies.

In Section 2, we introduce a new uncertainty set and formulate the robust counterpart. In Section 3,

we present new deviation measures that capture distributional asymmetry. Following which, Section 4

shows how we can integrate the new uncertainty set with the new deviation measures to obtain solutions

to chance constrained problems. We present in Section 5 a robust optimization approach for obtaining

less conservative solutions for stochastic programming with chance constraints. We also show how our

robust optimization framework is applied to a project management problem with uncertain completion

time in Section 6. Finally Section 7 concludes this paper.

Notations We denote a random variable, x̃, with the tilde sign. Bold face lower case letters such as

x represent vectors and the corresponding upper case letters such as A denote matrices.
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2 Robust Formulation of a Stochastic Linear Constraint

Consider a stochastic linear constraint,

ã′x ≤ b̃, (1)

in which the input parameters (ã, b̃) are random. We assume that the uncertain data, D̃ = (ã, b̃) has

the following underlying perturbations.

Affine Data Perturbation:

We represent uncertainties on the data D̃ as affinely dependent on a set of independent random variables,

{z̃j}j=1:N as follows,

D̃ = D0 +
N∑

j=1

∆Dj z̃j ,

where D0 is the nominal value of the data, ∆Dj , j ∈ N is a direction of data perturbation. We

call z̃j the primitive uncertainties which has mean zero and support in [−zj , z̄j ], zj , z̄j > 0. If N is

small, we model situations involving a small collection of primitive independent uncertainties, or large,

potentially as large as the number of entries in the data. In the former case, the elements of D̃ are

strongly dependent, while in the latter case the elements of D̃ are weakly dependent or even independent

(when the number of entries in the data equals N).

We desire a set of solutions X(ε) such that x ∈ X(ε) is feasible to the linear constraint (1) with

probability at least 1 − ε. Formally, we can describe the set X(ε) aptly using the following chance

constraint representation (see Charnes and Cooper [15]),

X(ε) =
{
x : P(ã′x ≤ b̃) ≥ 1− ε

}
. (2)

The parameter ε in the set X(ε) varies the conservatism of the solution. Unfortunately for ε > 0, the set

X(ε) is often non-convex and computationally intractable (see Birge and Louveaux [14]). Furthermore,

the evaluation of probability requires full knowledge of data distributions which is often an unrealistic

assumption. In view of the difficulties, robust optimization presents a different approach to handling

data uncertainty. Specifically, in addressing the uncertain linear constraint of (1), we represent the set

of robust feasible solution

Xr(Ω) =
{
x : a′x ≤ b ∀(a, b) ∈ UΩ

}
, (3)

in which the uncertain set, UΩ is compact and the parameter Ω, referred to as the budget of uncertainty,

varies the size of the uncertainty set radially from the central point UΩ=0 = (a0, b0) , such that UΩ ⊆
UΩ′ ⊆ W for all Ωmax ≥ Ω′ ≥ Ω ≥ 0. Here the worst case uncertainty set W is the convex support
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of the uncertain data, which is the smallest closed convex set satisfying P((ã, b̃) ∈ W) = 1, and Ωmax

is the worst case budget of uncertainty, i.e., the minimum parameter Ω such that UΩ = W. For the

stochastic linear constraint, D0 = (a0, b0) and ∆Dj = (∆aj ,∆bj), the convex support of the uncertain

parameter is as follows,

W =



(a, b) : ∃z ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj ,∆bj)zj ,−z ≤ z ≤ z̄



 . (4)

Therefore, under affine data perturbation, the worst case uncertainty set is a parallelotope in which the

feasible solution is characterized by Soyster [24], which, of course, is a very conservative approximation

to X(ε). To derive a less conservative approximation, we need to choose the budget of uncertainty, Ω,

appropriately.

In designing such uncertainty set, we want to preserve the computational tractability both the-

oretically and most importantly practically of the nominal problem. Furthermore, we want to find

a guarantee on the probability such that the robust solution is feasible without being over conserva-

tive. In other words, for a reasonable choice of ε such as 0.001, there exists a parameter Ω such that

Xr(Ω) ⊆ X(ε). Furthermore, the budget of uncertainty Ω should be substantially smaller than the

worst case budget Ωmax, and so that the solution is potentially less conservative than the worst case

solution.

For symmetric bounded distributions, we can assume without loss of generality that the primitive

uncertainties z̃j are distributed in [−1, 1], that is z = z̄ = 1. The natural uncertainty set to consider is

the intersection of a norm uncertainty set, VΩ and the worst case support set, W as follows.

SΩ =



(a, b) : ∃z ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj , ∆bj)zj , ‖z‖ ≤ Ω





︸ ︷︷ ︸
=VΩ

∩W

=



(a, b) : ∃z ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj , ∆bj)zj , ‖z‖ ≤ Ω, ‖z‖∞ ≤ 1



 .

(5)

As the budget of uncertainty Ω increases, the norm uncertainty set, VΩ expands radially from the point

(a0, b0) until it engulfs the set W. In which case, the uncertainty set SΩ = W. Hence, for any choice

of Ω, the uncertainty set SΩ is always less conservative than the worst case uncertainty set W. Various

choices of norms, ‖ · ‖ are considered in robust optimization. Under the l2 or Ellipsoidal norm proposed

by Ben-Tal and Nemirovski [4], the feasible solutions to the robust counterpart of (3) in which UΩ = SΩ

is guaranteed feasible to the linear constraint with probability at least 1 − exp
(−Ω2/2

)
. The robust

counterpart is also equivalent to a formulation with second order cones constraints. In Bertsimas and
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Sim [10], they consider a l1 ∩ l∞ norm of the form ‖z‖l1∩l∞ = max{ 1√
N
‖z‖1, ‖z‖∞}, and show that

the feasibility guarantee is also 1− exp
(−Ω2/2

)
. The resultant robust counterpart under consideration

remains a linear optimization problem of about the same size which is practically suited for optimization

over integers. However, in the worst case, this approach can be more conservative than the use of

Ellipsoidal norm. In both approaches, the value of Ω is relatively small. For example, for feasibility

guarantee of 99.9%, we only need to choose Ω = 3.72. To compare with the worst case uncertainty set,

W, we note that for Ω greater than
√

N , the constraints ‖z‖2 ≤ Ω and max{ 1√
N
‖z‖1, ‖z‖∞} ≤ Ω are

the consequence of z satisfying, ‖z‖∞ ≤ 1. Hence, it is apparent that for both approaches, the budget

of uncertainty Ω is substantially smaller than the worst case budget in which Ωmax =
√

N .

In this paper, we restrict the vector norm, ‖.‖ we consider in an uncertainty set as follows,

‖u‖ = ‖|u|‖, (6)

where |u| is the vector with the j component equal to |uj | ∀j ∈ {1, . . . , N} and

‖u‖ ≤ ‖u‖2, ∀u. (7)

We call this a regular norm. It is easy to see that the Ellipsoidal norm and the l1∩l∞ norm we mentioned

satisfy these properties. The dual norm ‖.‖∗ is defined as

‖u‖∗ = max
‖x‖≤1

u′x.

We next show some basic properties of regular norms which we will subsequently use in our development.

Proposition 1 If the norm ‖ · ‖ satisfies Eq. (6) and Eq. (7), then we have

(a) ‖w‖∗ = ‖|w|‖∗.
(b) For all v, w such that |v| ≤ |w|, ‖v‖∗ ≤ ‖w‖∗.
(c) For all v, w such that |v| ≤ |w|, ‖v‖ ≤ ‖w‖.
(d) ‖t‖∗ ≥ ‖t‖2,∀t.

Proof : The proofs of (a), (b) and (c) are shown in Bertsimas and Sim [11].

(d) It is well known that the dual norm of Euclidian norm is also the Euclidian norm, that is, self dual.

For all t observe that

‖t‖∗ = max
‖z‖≤1

t′z ≥ max
‖z‖2≤1

t′z = ‖t‖∗2 = ‖t‖2.
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To build a generalization of the uncertainty set that takes into account the primitive uncertain-

ties being asymmetrically distributed, we first ignore the worst case support set, W and define the

asymmetric norm uncertainty set as follows,

AΩ =

{
(a, b) : ∃v, w ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj , ∆bj)(vj − wj),

‖P−1v + Q−1w‖ ≤ Ω, v, w ≥ 0

}
,

(8)

where P = diag(p1, . . . , pN ) and likewise, Q = diag(q1, . . . , qN ) with pj , qj > 0, j ∈ {1, . . . , N}. In the

subsequent section, it will be clear how P and Q relate to the forward and backward deviations of the

underlying primitive uncertainties. The following proposition shows the connection of the set AΩ with

the uncertainty set described by norm, VΩ defined in (5).

Proposition 2 When pj = qj = 1 for all j ∈ {1, . . . , N}, the uncertainty sets, AΩ and VΩ are equiva-

lent.

The proof is shown in Appendix A.

Speaking intuitively, to capture distributional asymmetries, we decompose the primitive data un-

certainty, z̃ into two random variables, ṽ = max{z̃, 0} and w̃ = max{−z̃, 0} such that z̃ = ṽ − w̃. The

multipliers 1/pj and 1/qj normalize the effective perturbation contributed by both ṽ and w̃ such that

the norm of the aggregated values falls within the budget of uncertainty.

Since pj , qj > 0, for Ω > 0, the point (a0, b0) lies in the interior of the uncertainty set AΩ. Hence, we

can easily evoke strong duality to obtain an equivalent formulation of the robust counterpart of (3) that

is computationally attractive, such as in the form of linear or second order cone optimization problems.

To facilitate our expositions, we need the following proposition.

Proposition 3 Let

z∗ = max a′v + b′w

s.t. ‖v + w‖ ≤ Ω

v, w ≥ 0,

(9)

then Ω‖t‖∗ = z∗, where tj = max{aj , bj , 0}, j ∈ {1, . . . , N}.

We present the proof in Appendix B.
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Theorem 1 The robust counterpart of (3) in which UΩ = AΩ is equivalent to




x :

∃u ∈ <N , h ∈ <
a0′x + Ωh ≤ b0

‖u‖∗ ≤ h

uj ≥ pj(∆aj ′x−∆bj), ∀j ∈ {1, . . . , N}
uj ≥ −qj(∆aj ′x−∆bj), ∀j ∈ {1, . . . , N}.





(10)

Proof : We first express the robust counterpart of (3) in which UΩ = AΩ as follows,

a0′x +
N∑

j=1

(
∆aj ′x−∆bj

)

︸ ︷︷ ︸
=yj

(vj − wj) ≤ b0 ∀v,w ∈ <N , ‖P−1v + Q−1w‖ ≤ Ω,v, w ≥ 0

m
a0′x + max

{v, w : ‖P−1v+Q−1w‖≤Ω

v, w≥0}

(v −w)′y ≤ b0

Observe that

max
{v, w : ‖P−1v+Q−1w‖≤Ω

v, w≥0}

(v −w)′y

= max
{v, w : ‖v+w‖≤Ω

v, w≥0}

(Py)′v − (Qy)′w (11)

= Ω‖t‖∗

where tj = max{pjyj ,−qjyj , 0} = max{pjyj ,−qjyj}, since pj , qj > 0 for all j ∈ {1, . . . , N}. Further-

more, the equality (11) follows from direct transformation of vectors v, w to respectively Pv, Qw.

The last equality follows directly from Proposition 3. Hence, the equivalent formulation of the robust

counterpart is

a0′x + Ω‖t‖∗ ≤ b0. (12)

Finally, suppose x is feasible in the robust counterpart of (3) in which UΩ = AΩ, we let u = t,

h = ‖t‖∗ and following from Eq. (12), the constraint (10) is also feasible. Conversely, if x is feasible in

(10), then u ≥ t. Following Proposition 1(b), we have

a0′x + Ω‖t‖∗ ≤ a0′x + Ω‖u‖∗ ≤ a0′x + Ωh ≤ b0.

The complete formulation and complexity class of the robust counterpart depends on the represen-

tation of the dual norm constraint, ‖u‖∗ ≤ y. In Appendix C, we tabulate the common choices of

regular norms, the representation of their dual norms and the corresponding references. In terms of

keeping the model linear and moderately increase in size, the l1 ∩ l∞ norm is an attractive choice.
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Incorporating Worst Case Support Set, W

We now incorporate the worst case support set W as follows

GΩ = AΩ ∩W.

Since we represent the support set of W equivalently as

W =



(a, b) : ∃v, w ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj ,∆bj)(vj − wj),−z ≤ v −w ≤ z̄,w, v ≥ 0



 ,

(13)

it follows trivially that

GΩ =

{
(a, b) : ∃v, w ∈ <N , (a, b) = (a0, b0) +

N∑

j=1

(∆aj , ∆bj)(vj − wj),

‖P−1v + Q−1w‖ ≤ Ω,−z ≤ v −w ≤ z̄, w, v ≥ 0

}
.

(14)

We will show an equivalent formulation of the corresponding robust counterpart under the general-

ized uncertainty set, GΩ.

Theorem 2 The robust counterpart of (3) in which UΩ = GΩ is equivalent to




x :

∃u, r, s ∈ <N , h ∈ <
a0′x + Ωh + r′z̄ + s′z ≤ b0

‖u‖∗ ≤ h

uj ≥ pj(∆aj ′x−∆bj − rj + sj) ∀j = {1, . . . , N},
uj ≥ −qj(∆aj ′x−∆bj − rj + sj) ∀j = {1, . . . , N},
u, r, s ≥ 0.





(15)

Proof : Similar to the exposition of Theorem 1, the robust counterpart of (3) in which UΩ = GΩ is as

follows,

a0′x + max
(v, w)∈C

(v −w)′y ≤ b0

where

C =
{
(v, w) : ‖P−1v + Q−1w‖ ≤ Ω,−z ≤ v −w ≤ z̄, w, v ≥ 0

}
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and yj = ∆aj ′x − ∆bj . Since C is a compact convex set with nonempty interior, we can use strong

duality to obtain the equivalent representation. Observe that

max
{v,w : ‖P−1v+Q−1w‖≤Ω,

−z≤v−w≤z̄,w,v≥0}

(v −w)′y

= min
r,s≥0





max
{v,w:‖P−1v+Q−1w‖≤Ω,

v,w≥0}

(v −w)′y + r′(z̄ − v + w) + s′(z + v −w)





= min
r,s≥0





max
{v,w:‖P−1v+Q−1w‖≤Ω,

v,w≥0}

(y − r + s)′v − (y − r + s)′w + r′z̄ + s′z





= min
r,s≥0



 max
{v,w:‖v+w‖≤Ω,

v,w≥0}

(P (y − r + s))′v − (Q(y − r + s))′w + r′z̄ + s′z





= min
r,s≥0

{
Ω‖t(r, s)‖∗ + r′z̄ + s′z

}
,

where the first equality is due to strong Lagrangian duality (see for instance Bertsekas [7]) and the last

inequality follows from Proposition 3 in which

t(r, s) =




max(p1(y1 − r1 + s1),−qj(y1 − r1 + s1), 0)
...

max(pN (yN − rN + sN ),−qj(yN − rN + sN ), 0)




=




max(p1(y1 − r1 + s1),−qj(y1 − r1 + s1))
...

max(pN (yN − rN + sN ),−qj(yN − rN + sN ))




.

Hence the robust counterpart is the same as

a0′x + min
r,s≥0

{
Ω‖t(r, s)‖∗ + r′z̄ + s′z

} ≤ b0. (16)

Using similar arguments as in Theorem 1, we can easily show that the feasible solution of (16) is

equivalent to (15).

3 Deviation Measures for Bounded Distributions

When incorporated in optimization models, operations on random variables in which the distributions

are given are often cumbersome and computationally intractable. Moreover, in many practical problems,

we do not know the precise data distributions and hence solutions based on assumed distributions may
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be unjustified. Instead of using full distributional information, our aim is to identify some salient

characteristics of data distribution that we could use to exploit in robust optimization so as to obtain

nontrivial probability bounds against constraint violation.

We commonly measure the variability of a random variable using variance or second moments which

is, however, insensitive to distributional asymmetry. In this section, we introduce new deviation mea-

sures for bounded random variables that will capture distributional asymmetries and when applied to

our proposed robust methodology, we can achieve the desired probabilistic guarantee against constraint

violations.

Based on these deviation measures, we have a method that adapts to our knowledge of data distribu-

tion. Specifically, if only the support and the mean are known, we can use suitable parameters to achieve

solutions that are reasonably less conservative compared to the worst case solution. Likewise, whenever

the data distributions are available, we can incorporate these information to yield better solutions.

In the following, we present a specific pair of deviation measures suitable for bounded random

variables. A general framework of deviation measures, which is useful for broader settings, can also be

defined. However, in order not to interrupt the flow of the context, we present the general framework

in Appendix D.

Forward and Backward Deviations Let z̃ be a bounded random variable and Mz̃(s) = E(exp(sz̃))

be its moment generating function. We define the set of values associated with forward deviations of z̃

as follows,

P(z̃) =

{
α : α ≥ 0,Mz̃−E(z̃)

(
φ

α

)
≤ exp

(
φ2

2

)
∀φ ≥ 0

}
. (17)

Likewise, for backward deviations, we define the following set,

Q(z̃) =

{
α : α ≥ 0,Mz̃−E(z̃)

(
−φ

α

)
≤ exp

(
φ2

2

)
∀φ ≥ 0

}
. (18)

For completeness, we also define P(c) = Q(c) = <+ for any constant c. Observe that P(z̃) = Q(z̃) if

z̃ is symmetrically distributed around its expectation. For known distributions, we define the forward

deviation of z̃ as p∗z̃ = inf P(z̃) and the backward deviation as q∗z̃ = infQ(z̃).

We note that the deviation measures are defined for some distributions with unbounded support

such as normal distributions. However, some distributions do not have finite deviation measures, for

example, exponentials and gamma distributions. Later in this section we will discuss the practicality of

considering bounded support, where the existence of finite deviation measures is guaranteed.

The following results summarize the key properties of the deviation measure after we perform linear

operations on independent random variables.
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Theorem 3 Let x̃ and ỹ be two independent random variables with zero means such that px̃ ∈ P(x̃),

qx̃ ∈ Q(x̃), pỹ ∈ P(ỹ) and qỹ ∈ Q(ỹ).

(a) If z̃ = ax̃, then

(pz̃, qz̃) =





(apx̃, aqx̃) if a ≥ 0

(−aqx̃,−apx̃) otherwsie

satisfy pz̃ ∈ P(z̃) and qz̃ ∈ Q(z̃). In other words, pz̃ = max{apx̃,−aqx} and qz̃ = max{aqx̃,−apx}.
(b) If z̃ = x̃ + ỹ, then (pz̃, qz̃) =

(√
p2

x̃ + p2
ỹ,

√
q2
x̃ + q2

ỹ

)
satisfy pz̃ ∈ P(z̃) and qz̃ ∈ Q(z̃).

(c) For all p ≥ px̃ and q ≥ qx̃, we have p ∈ P(x̃) and q ∈ Q(x̃).

(d)

P (x̃ > Ωpx̃) ≤ exp

(
−Ω2

2

)

and

P (x̃ < −Ωqx̃) ≤ exp

(
−Ω2

2

)
.

Proof : (a) We can examine this condition easily from the definitions of P(z̃) and Q(z̃).

(b) To prove part (b), let pz̃ =
√

p2
x̃ + p2

ỹ. We have that for any φ ≥ 0,

E
(
exp

(
φ x̃+ỹ

pz̃

))

= E
(
exp

(
φ x̃

pz̃

)
exp

(
φ ỹ

pz̃

))
[since x̃ and ỹ are independent ]

= E
(
exp

(
φpx̃

pz̃

x̃
px̃

))
E

(
exp

(
φ

pỹ

pz̃

ỹ
pỹ

))

≤ exp
(

φ2

2
p2

x̃

p2
z̃

)
exp

(
φ2

2

p2
ỹ

p2
z̃

)

= exp
(

φ2

2

)
.

Thus, pz̃ =
√

p2
x̃ + p2

ỹ ∈ P(z̃). Similarly, we can show that
√

q2
x̃ + q2

ỹ ∈ Q(z̃)

(c) Observe that

E
(

exp
(

φ
x̃

p

))
= E

(
exp

(
φ

px̃

p

x̃

px̃

))
≤ exp

(
φ2

2
p2

x̃

p2

)
≤ exp

(
φ2

2

)
.

The proof relating to backward deviation is similar.

(d) Note that

P (x̃ > Ωpx̃) = P
(

Ωx̃

px̃
> Ω2

)
≤

E
(
exp

(
Ωx̃
px̃

))

exp(Ω2)
≤ exp

(
−Ω2

2

)
,

where the first inequality follows from Chebyshev’s inequality. The proof relating to backward deviation

is the same.
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For some distributions, we can find bounds on the deviations p∗ and q∗ or even close form expressions.

In particular, for general distribution, we can show that these values are no less than the standard

deviation. Interestingly, under normal distribution, these values coincide with standard deviation.

Proposition 4 If the random variable z̃ has mean zero and standard deviation σ, then p∗z̃ ≥ σ and

q∗z̃ ≥ σ. If in addition, z̃ is normally distributed, then p∗z̃ = q∗z̃ = σ.

Proof : Notice that for any p ∈ P(z̃), we have

E
(

exp
(

φ
z̃

p

))
= 1 +

1
2
φ2 σ2

p2
+

∞∑

k=3

φkE[z̃k]
pkk!

,

and

exp

(
φ2

2

)
= 1 +

φ2

2
+

∞∑

k=2

φ2k

2kk!
.

According to the definition of P(z̃), we have E
(
exp

(
φ z̃

p

))
≤ exp

(
φ2

2

)
for any φ ≥ 0. In particular,

this inequality is true for φ close to zero, which implies that

1
2
φ2 σ2

p2
≤ φ2

2
.

Thus, p ≥ σ. Similarly, for any q ∈ Q(z̃), q ≥ σ.

For the normal distribution, the proof follows trivially from the fact that

E
(

exp
(

φ
z̃

α

))
= E

(
exp

(
φ

σ

α

z̃

σ

))
= exp

(
φ2σ2

2α2

)
.

For most distributions, we are unable to obtain close form solutions of p∗ and q∗. Nevertheless, we

can still determine their values numerically. For instance, if z̃ is uniformly distributed over [−1, 1], we

can determine numerically that p∗ = q∗ = 0.58, which is close to the standard deviation 0.5774. In

Table 1 we compare the values of p∗, q∗ and standard deviation σ in which z̃ has discrete distributions

as follows

P(z̃ = k) =





β if k = 1

1− β if k = − β
1−β

. (19)

In this example, the standard deviation is close to q∗ but underestimates the value of p∗. Hence, it is

apparent that if the distribution is asymmetric, the forward and backward deviations can differ from

the standard deviation.

It will be clear in the subsequent section that we can use the values of p∗ = inf{P(z̃)} and q∗ =

inf{Q(z̃)} in our uncertainty set to obtain the desired probability bound against constraint violation.
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β p∗ q∗ σ p̄ q̄

0.5 1 1 1 1 1

0.4 0.83 0.82 0.82 0.83 0.82

0.3 0.69 0.65 0.65 0.69 0.65

0.2 0.58 0.50 0.50 0.58 0.50

0.1 0.47 0.33 0.33 0.47 0.33

0.01 0.33 0.10 0.10 0.33 0.10

Table 1: Numerical comparisons of different deviation measures for centered Bernoulli distributions.

Unfortunately, if the distribution of z̃ is not precisely known, we would not be able to determine values

of p∗ and q∗. Under such circumstances, as long as we can determine (p, q) such that p ∈ P(z̃) and

q ∈ Q(z̃), we can still construct the uncertainty set that achieves the probabilistic guarantees, albeit

more conservatively. In the following, we identify such (p, q) for a random variable z̃ assuming we only

know its mean and support.

Theorem 4 If z̃ has zero mean and distributed in [−z, z̄], z, z̄ > 0, then

p̄ =
z + z̄

2

√
g

(
z − z̄

z + z̄

)
∈ P(z̃)

and

q̄ =
z + z̄

2

√
g

(
z̄ − z

z + z̄

)
∈ Q(z̃),

where

g(µ) = 2 max
s>0

φµ(s)− µ

s2
,

and

φµ(s) = ln

(
es + e−s

2
+

es − e−s

2
µ

)
.

Proof : It is clear that through scaling and shifting,

x̃ =
z̃ − (z̄ − z)/2

(z + z̄)/2
∈ [−1, 1].

Thus, it suffices to show that √
g(µ) ∈ P(x̃),

13



where

µ = E[x̃] =
z − z̄

z + z̄
∈ (−1, 1).

The proof related to backward deviation is similar.

First, observe that p ∈ P(x̃) if and only if

ln (E [exp (sx̃)]) ≤ (x̃)s +
p2

2
s2, ∀s ≥ 0. (20)

We want to find a p such that the inequality (20) holds for for all possible random variables x̃ distributed

in [−1, 1] with mean µ. For this purpose, we formulate an infinite dimensional linear program as follows:

max
∫ 1
−1 exp(sx)f(x)dx

s.t.
∫ 1
−1 f(x)dx = 1

∫ 1
−1 xf(x)dx = µ

f(x) ≥ 0.

(21)

The dual of the above infinite dimensional linear program is

min u + vµ

s.t. u + vx ≥ exp(sx),∀x ∈ [−1, 1].

Since exp(sx)−vx is convex in x, the dual is equivalent to a linear program with two decision variables.

min u + vµ

s.t. u + v ≥ exp(s)

u− v ≥ exp(−s).

(22)

It is easy to check that (u∗, v∗) =
(

es+e−s

2 , es−e−s

2

)
is the unique extreme point of the feasible set of

problem (22) and µ ∈ (−1, 1). Hence problem (22) is bounded and in particular, the unique extreme

point (u∗, v∗) is optimal. Therefore, es+e−s

2 + es−e−s

2 µ is the optimal objective value and by weak duality,

it is an upper bound of the infinite dimensional linear program (21).

Notice that φµ(0) = 0 and φ′µ(0) = µ. Therefore, for any random variable x̃ ∈ [−1, 1] with mean µ,

we have

ln (E [exp (sx̃)]) ≤ φµ(s) = φµ(0) + φ′µ(0)s +
1
2
s2 φµ(s)− µs

1
2s2

≤ µs +
1
2
s2g(µ).

Hence,
√

g(µ) ∈ P(x̃).

Remark 1: This theorem implies that all probability distributions with bounded support have finite

forward and backward deviations. It also enables us to find valid deviation measures from the support
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of distributions. In Table 1, we show the values of p̄ and q̄, which coincide with the deviation measures.

Indeed, it is not difficult to see that
√

g(µ) = inf{P(x̃)} for the two point random variable x̃ which

takes value 1 with probability (1 + µ)/2 and −1 with probability (1− µ)/2.

Remark 2: The function g(µ) defined in the theorem appears hard to analyze. Fortunately, the

formulation can be simplified to g(µ) = 1− µ2 for µ ∈ [0, 1). Notice that

φµ(s)− µs
1
2s2

= 2
∫ 1

0
φ′′µ(sξ)(1− ξ)dξ,

and

φ′′µ(s) = 1−
(

α(s) + µ

1 + α(s)µ

)2

,

where α(s) = (es− e−s)/(es + e−s) ∈ [0, 1) for s ≥ 0. Since for µ ∈ (−1, 1), inf0≤α<1
α+µ
1+αµ = µ, we have

that for µ ∈ [0, 1),

φ′′µ(s) ≤ φ′′µ(0) = 1− µ2, ∀s ≥ 0,

which implies that g(µ) = 1− µ2 for µ ∈ [0, 1).

Unfortunately, for µ ∈ (−1, 0), we do not have a close form expression for g(µ). However, we can

obtain some upper and lower bounds for the function g(µ). First notice that when µ ∈ (−1, 0), we have

φ′′µ(s) ≥ φ′′µ(0) = 1−µ2 for s close to 0 and hence 1−µ2 is a lower bound for g(µ). Further, numerically,

we observe from Figure 1 that g(µ) ≤ 1 − 0.3µ2 . On the other hand, when µ is close to −1, we can

have a tighter lower bound for g(µ) as follows

p2(µ) =
(1− µ)2

−2 ln ((1 + µ)/2)
.

Indeed, since any distribution x̃ in [−1, 1] with mean µ satisfies

P
(

x̃− µ > Ω
√

g(µ)
)
≤ exp(−Ω2/2),

we have that √
g(µ) ≥ p = inf{p : P(x̃− µ > Ωp) < exp(−Ω2/2)}.

In particular, when Ω =
√−2 ln((1 + µ)/2), for the two point distribution x̃ which takes value 1 with

probability (1 + µ)/2 and −1 with probability (1 − µ)/2, we obtain p2 = p2(µ) = (1−µ)2

−2 ln((1+µ)/2) . From

Figure 1, we observe p2(µ) and g(µ) converge to 0 at the same rate as µ approaches −1.
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Figure 1: Function g(µ) and related bounds

3.1 Practicality of using Forward and Backward Deviations

Bounded support

In real world models, measurements are finite and hence, the assumption of bounded support is not

practically restrictive. Although there are many interesting unbounded distributions with concise math-

ematical representations, beautiful properties (example memoryless property), elegant applications to

stochastic processes leading to new insights, they are at best an asymptotic approximation of prac-

tical stochastic uncertainties. Therefore, to obtain valid deviation measures for unbounded random

variables, we have to truncate the distributions so as to reflect upon their practical constraints. For

instance, instead of assuming exponential distributions for inter-arrival time, it is reasonable to trun-

cate the distribution to within say four to ten times its mean arrival. As an illustration, we consider a

truncated exponential random variable, x̃ in [0, x̄] with distribution

fx̃(x) =
exp(−x)

1− exp(−x̄)

and compare the deviation measures in Table 2. Although the forward deviation of a pure exponential

distributed random variable is infinite, the truncated exponential distribution has reasonably small

forward deviation compared to the support x̄. Even when x̄ = 10, which is already a conservative level

of truncation, the forward deviation is only slightly more than twice its standard deviation.

For random variables with unknown domain, we can use the support set to obtain upper limits of
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x̄ 4 5 6 7 8 9 10 100

σ 0.834 0.911 0.954 0.977 0.989 0.995 0.998 1.000

p∗ 1.037 1.239 1.419 1.583 1.733 1.871 2.000 7.000

q∗ 0.834 0.911 0.954 0.977 0.989 0.995 0.998 1.000

Table 2: Deviation measures for truncated exponential variable with support [0, x̄].

the deviation measures. It is rather common for modelers to assume support set even in the absence of

any data to construct the empirical distributions. For instance, in engineering models, the support sets

are often related to known physical limits. In fact, it is a common notion in engineering that a practical

random variable never exceeds three times its standard deviation.

Asymptotic behavior of the deviation measure estimators

Given a set of M independent samples, we can estimate the forward and backward deviations by using

sample estimates of the moment generating functions. We conjecture that the standard deviations of

these estimators decrease at the rate of 1/
√

M . To demonstrate this, we perform empirical studies on

the convergence of the forward deviation and backward deviation estimators (respectively p̂∗M and q̂∗M )

for standard normal distribution. Indeed, the forward and backward deviation estimators approach one

as sample size increases. We repeat the experiment 1000 times to estimate the standard deviations of

forward deviation and backward deviation estimators (respectively σ̂ (p̂∗M ) and σ̂ (q̂∗M )) and present the

results in Table 3. The convergence rate supports the conjecture. Hence, besides relying on valid support

sets, we can also use historical data to estimate the forward and backward deviations. Therefore, as

much as we could assume unknown domains with known mean and second moments, we can also assume

unknown domains with known mean, forward deviation and backward deviation.

Comparison with probability bounds derived from standard deviation

It is interesting to compare the approach with probability bounds based on standard deviation. We

believe that the forward and backward deviations should provide a better bound for a wide variety of

practical bounded distributions compared to standard deviation. Here we explain why. For any random

variable z̃ with mean zero and standard deviation σ, forward deviation, p∗, and backward deviation, q∗

we have from Chebyshev Inequality,

P(z̃ > Λσ) ≤ 1/Λ2, (23)
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M σ̂ (p̂∗M ) σ̂ (q̂∗M ) 1/
√

M

10 0.2191 0.2182 0.3162

20 0.1697 0.1644 0.2236

50 0.1135 0.1176 0.1414

100 0.0818 0.0821 0.1000

200 0.0645 0.0695 0.0707

Table 3: Convergence rate of deviation estimators.

while the bound provided by the forward deviation is

P(z̃ > Ωp∗) ≤ exp
(
−Ω2/2

)
. (24)

For the same violation probability, ε, bound (23) suggests Λ = 1/
√

ε while bound (24) requires Ω =
√−2 ln(ε). Since the probability bounds are asymptotically tight for some distributions1, to compare

both bounds, we can examine the magnitudes of Λσ and Ωp∗ for various distributions when ε approaches

zero. For any distribution with the forward deviation close to the standard deviation (such as normal

distribution), we expect the bound (23) to perform poorly comparing to (24). Furthermore, as p∗ is

finite for bounded distributions, the magnitude of Λσ will exceed Ωp∗ as ε approaches zero. For example,

in the case of the centered Bernoulli distribution of (19) with β = 0.01, we have σ = 0.1 and p∗ = 0.33.

Hence, Λσ > Ωp∗ for ε < 0.0099. It is often necessary in robust optimization to protect against low

probability “disruptive events” that may result in large deviations. Otherwise, such rare events should

be totally ignored in the model. Therefore, since the event z̃ = 1 is a “destructive” one, it is reasonable

to choose ε < 0.0099 ≈ P (z̃ = 1) = 0.01, in which case, it would be better to use the bound (24).

Another disadvantage of using standard deviation for bounding probabilities is the inability to capture

distributional skewness. As evident from the two point distribution of (19) when β is small, the same

value of Λσ to ensure that P(z̃ < −Λσ) < ε can be large compared to Ωq∗.
1The bound (23) is asymptotically tight for the centered Bernoulli distribution of (19) in which β = ε and ε

approaches zero. Indeed, to safeguard against the low probability event of z̃ = 1, we require Λ to be at least

1/σ = 1/
√

β + β2/(1− β) ≈ 1/
√

ε, so that P(z̃ > Λσ) < ε. For the same two point distribution, we verify numer-

ically that Ωp∗ converges to one, as β = ε approaches to zero, suggesting that the bound (24) is also asymptotically

tight.
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4 Probability Bounds of Constraint Violation

In this section, we will show how the new deviation measures relate to the probability bound of constraint

violations in the robust framework.

Model of Data Uncertainty, U:

We assume that the primitive uncertainties {z̃j}j=1:N are independent, zero mean random variables,

with support z̃j ∈ [−zj , z̄j ], and deviation measures, (pj , qj) satisfying,

pj ∈ P(z̃j), qj ∈ Q(z̃j) ∀j = {1, . . . , N}.

We consider the generalized uncertainty set GΩ, which takes into account the worst case support

set, W.

Theorem 5 Let x be feasible for the robust counterpart of (3) in which UΩ = GΩ then

P
(
ã′x > b̃

)
≤ exp

(
−Ω2

2

)
.

Proof : Since x is feasible in (15), using the equivalent formulation of inequality (16), it follows that

P
(
ã′x > b̃

)

= P
(
a0′x + z̃′y > b0

)

≤ P
(

z̃′y > min
r,s≥0

{
Ω‖t(r, s)‖∗ + r′z̄ + s′z

})

≤ P
(

z̃′y > min
r,s≥0

{
Ω‖t(r, s)‖2 + r′z̄ + s′z

})
,

where yj = ∆aj ′x−∆bj and

t(r, s) =




max(p1(y1 − r1 + s1),−qj(y1 − r1 + s1))
...

max(pN (yN − rN + sN ),−qj(yN − rN + sN ))




.

Let

(r∗, s∗) = arg min
r,s≥0

{
Ω‖t(r, s)‖2 + r′z̄ + s′z

}

and t∗ = t(r∗, s∗). Observe that since −zj ≤ z̃j ≤ z̄j , we have r∗j z̄j ≥ r∗j z̃j and s∗jzj ≥ −s∗j z̃j . Therefore,

P
(
z̃′y > Ω‖t∗‖2 + r∗′z̄ + s∗′z

)
≤ P

(
z̃′(y − r∗ + s∗

)
> Ω‖t∗‖2).

From Theorem 3(a), we have t∗j ∈ P(z̃j(yj − r∗j + s∗j )). Following Theorem 3(b), we have

‖t∗‖2 ∈ P
(
z̃′(y − r∗ + s∗)

)
.
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Finally, the desired probability bound follows from Theorem 3(d).

We use Euclidian norm as the benchmark to obtain the desired probability bound. Naturally, we

can use other norms such as l1∩ l∞-norm ‖z‖ = max
{

1√
N
‖z‖1, ‖z‖∞

}
to achieve the same bound. The

natural question is whether the approximation is worthwhile. Noting from the inequality (12), the value

Ω‖t‖∗, gives the desired “safety distance” against constraint violation. Since, by design ‖t‖∗ ≥ ‖t‖2,

a way to compare the level of conservativeness between the choice of norms is through the worst case

ratio as follows

γ = max
t6=0

‖t‖∗
‖t‖2

.

It turns out that for l1 ∩ l∞ norm, γ =
√
b√Nc+ (

√
N − b√Nc)2 ≈ N1/4 (see Bertsimas and Sim [10]

and Bertsimas et al. [8]). Hence, although the resultant model is linear of manageable size, the choice

of the polyhedral norm can lead to more conservative solution compared to the use of Euclidian norm.

Using the forward and backward deviations, the proposed robust counterpart generalizes the results

of Ben-Tal and Nemirovski [4] and Bertsimas and Sim [10]. Indeed, if z̃j has support in [−1, 1], from

Theorem 4, we have pj = qj = 1 and hence, we will obtain the same robust counterparts. Our result

is also stronger, as we do not require distribution symmetry to ensure the same probability bound

of exp(−Ω2/2). The worst case budget Ωmax is at least
√

N so that GΩmax = W, which can be far

conservative when N is large. Therefore, even if little is known about the underlying distribution,

except for the mean and support, this approach is potentially less conservative than the worst case

solution.

5 Stochastic Programs with Chance Constraints

Consider the following two stage stochastic program,

Z∗ = min c′x + E(d′y(z̃))

s.t. ai(z̃)′x + b′iy(z̃) ≤ fi(z̃), a.e., ∀i ∈ {1, . . . , m},

x ∈ <n1 ,

y(·) ∈ Y,

(25)

where x corresponds to the first stage decision vector, and y(z̃) being the recourse function in a space

of measurable functions, Y with domain W and range <n2 . Note that to optimize over the space of

measurable functions amounts to solving an optimization problem with potentially large or even infinite

number of variables. In general, however, finding a first stage solution, x, such that there exists feasible
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recourse for all realization of uncertainty can be a intractable problem (see Ben-Tal et al. [5] and

Shapiro and Nemirovski [23]). Nevertheless, in some applications of stochastic optimization, the risk of

infeasibility can be tolerated as a tradeoff to improve upon the objective value. Therefore, we consider

the following stochastic program with chance constraints,

Z∗ = min c′x + E(d′y(z̃))

s.t. P
(
ai(z̃)′x + b′iy(z̃) ≤ fi(z̃)

) ≥ 1− εi ∀i ∈ {1, . . . ,m}

x ∈ <n,

y(·) ∈ Y,

(26)

in which εi > 0. To obtain less conservative solution, we could vary the risks of constraint violations,

and hence extend the feasible space for solutions, x and y(·).
Under the Model of Data Uncertainty, U, we assume that z̃j ∈ [−zj , z̄j ], j ∈ {1, . . . , N} are inde-

pendent random variables with mean zero and deviation parameters (pj , qj) satisfying pj ∈ P(z̃j) and

qj ∈ Q(z̃j). For all i ∈ {1, . . . , m}, under the Affine Data Perturbation, we have

ai(z̃) = a0
i +

N∑

j=1

∆aj
i z̃j ,

and

fi(z̃) = f0
i +

N∑

j=1

∆f j
i z̃j .

To design a tractable robust optimization approach for solving (26), we restrict the recourse function

y(·) to one of linear decision rule as follows,

y(z) = y0 +
N∑

j=1

yjzj . (27)

Apparently, linear decision rules surfaced in early development of stochastic optimization (see Garstka

and Wets [19]) and reappeared recently in affinely adjustable robust counterpart introduced by Ben-Tal

et al. [5]. The linear decision rule enables us to design a tractable robust optimization approach for

finding feasible solutions in the model (26) for all distributions satisfying the Model of Data Uncertainty,

U.
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Theorem 6 The optimal solution to the following robust counterpart,

Z∗r = min c′x + d′y0

s.t. a0
i
′
x + b′iy0 + Ωihi + ri′z̄ + si′z ≤ f0

i ∀i ∈ {1, . . . ,m}

‖ui‖∗ ≤ hi ∀i ∈ {1, . . . , m}

ui
j ≥ pj(∆aj

i

′
x + b′iyj −∆f j

i − ri
j + si

j) ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , N}

ui
j ≥ −qj(∆aj

i

′
x + b′iyj −∆f j

i − ri
j + si

j) ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , N}

x ∈ <n,

yj ∈ <k ∀j ∈ {0, . . . , N}
ui, ri, si ∈ <N

+ , hi ∈ < ∀i ∈ {1, . . . , m},

(28)

in which Ωi =
√−2 ln(εi) is feasible in the stochastic optimization model (26) for all distributions that

satisfy the Model of Data Uncertainty, U and Z∗r ≥ Z∗.

Proof : Restricting the space of recourse solutions y(z) in the form of Eq. (27), we have

E
(
d′y(z̃)

)
= d′y0.

Hence, the following problem,

Z∗1 = min c′x + d′y0

s.t. P
(
a0

i
′
x + b′iy0 +

∑N
j=1

(
∆aj

i

′
x + b′iyj −∆f j

i

)
z̃j ≤ f0

i

)
≥ 1− εi ∀i ∈ {1, . . . , m}

x ∈ <n,

yj ∈ <k ∀j ∈ {0, . . . , N},

(29)

gives the upper bound to the model (26). Applying Theorem 5 and using Theorem 2, the feasible

solution of the model (28) is also feasible in the model (29) for all distributions that satisfy the Model

of Data Uncertainty, U. Hence, Z∗r ≥ Z∗1 ≥ Z∗.

We can easily extend the framework to T stage stochastic program with chance constraints as follows,

Z∗ = min c′x +
T∑

t=1

E
[
d′tyt(z̃1, .., z̃t)

]

s.t. P
(
ai(z̃1, .., z̃T )′x +

∑T
t=1 b′ityt(z̃1, .., z̃t) ≤ fi(z̃1, .., z̃T )

)
≥ 1− εi ∀i ∈ {1, . . . , m}

x ∈ <n,

yt(z1, ..zt) ∈ <k ∀t = 1, ..T,zt ≤ zt ≤ z̄t,

(30)
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In the multi-period model, we assume that the underlying uncertainties, z̃1 ∈ <N1 , . . . , z̃T ∈ <NT

unfolds progressively from the first period to the last period. The vector of primitive uncertainties, z̃t

is only available at the tth period. Hence, under the Affine Data Perturbation, we may assume that z̃t

is statistically independent with other periods. With the above assumptions, we obtain

ai(z̃1, .., z̃T ) = a0
i +

T∑

t=1

Nt∑

j=1

∆aj
itz̃

j
t ,

and

fi(z̃1, .., z̃T ) = f0
i +

T∑

t=1

Nt∑

j=1

∆f j
itz̃

j
t .

In order to derive the robust formulation of the multi-period model, we similarly use linear decision

rules on the recourse function that fulfill the nonanticipativity requirement as follows,

yt(z1, ..,zt) = y0
t +

t∑

τ=1

Nt∑

j=1

yj
τz

j
τ .

Essentially, multiperiod robust model is the same as the two period model we have presented and does

not suffer from the “curse of dimensionality”.

5.1 On Linear Decision Rule

Linear decision rule is the key enabling mechanism that permits scalability to mutistage models. It has

appeared in earlier proposals of stochastic optimization, however, due to the perceived limitations, the

method was short-lived (see Garstka and Wets [19]). Indeed, hard constraints, such as, y(z̃) ≥ 0, can

nullify any benefit of linear decision rules on the recourse function, y(z̃). As an illustration, we consider

a linear decision rule,

y(z̃) = y0 +
N∑

j=1

yj z̃j ,

where the primitive uncertainties, z̃ have unbounded support and finite forward and backward deviations

(such as normal distributions). In this extreme example, we investigate the following hard constraints,

y(z̃) ≥ 0

y(z̃) ≥ b(z̃) = b0 +
∑N

j=1 bj z̃j ,
(31)

where bj 6= 0, on the linear decision rule. Since the support of z̃ is unbounded, the constraints (31)

imply yj = 0 and yj = bj for all j ∈ {1, . . . , N}, which resulted in infeasibility of the linear decision

rule. However, the linear decision rule can survive in soft constraints such as

P(y(z̃) ≥ 0) ≤ 1− ε,

P(y(z̃) ≥ b(z̃)) ≤ 1− ε
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even for very high reliability. For instance, suppose pj = qj = 1, and ε = 10−7, the following robust

counterpart approximation of the chance constraints becomes

y0 ≥ Ω‖[y1, . . . , yN ]‖2,

y0 − b0 ≥ Ω‖[y1 − b1, . . . , yN − bN ]‖2,

where Ω = 5.68. Since, Ω =
√−2 ln(ε) is a small number even for high robustness, the solution space

for the linear decision rule is not overly constrained. Hence, the linear decision rule may remain viable

if risk of infeasibility in the stochastic optimization model can be tolerated. For some applications, the

linear decision rule seems to perform reasonably well (see Ben-Tal et al [5, 6]). As a matter of fact, the

project management example presented next will further illuminate the benefits of linear decision rules.

6 Application Example: Project Management under Uncertain Ac-

tivity Time

Project management problems can be represented by a directed graph with m arcs and n nodes. Each

node on the graph represents an event marking the completion of a particular subset of activities. We

denote the set of directed arcs on the graph as E . Hence, an arc (i, j) ∈ E is an activity that connects

event i to event j. By convention, we use node 1 as the start event and the last node n as the end event.

We consider a project management example of several activities. Each activity has random comple-

tion time, t̃ij . The completion of activities must adhere to precedent constraints. For instance, activity

e1 precedes activity e2 if activity e1 must be completed before activity e2. Analysis on stochastic project

management problem such as determining the expected completion time and quantile of completion time

is well known to be notoriously difficult (Hagstrom [20]).

In our computational experiment, we assume that the random completion time t̃ij is independent

of the completion times of other activities and its mean is affinely dependent on the additional amount

of resource, xij ∈ [0, x̄ij ] committed on the activity as follows

t̃ij = (1 + z̃ij)bij − aijxij , (32)

where z̃ij ∈ [−zij , z̄ij ], zij ≤ 1, (i, j) ∈ E are independent random variables with zero means and

deviation measures, (pij , qij) satisfying pij ∈ P(z̃ij) and qij ∈ Q(z̃ij). We also assume that t̃ij ≥ 0 for all

realization of z̃ij and valid range of xij . We note that the assumption of independent activity completion

times can be rather strong and difficult to verify in practice. Nevertheless, we have to identify some form
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of independence in order to have any benefit of risk pooling. Otherwise, the solution would have been

a conservative one. We highlight that the model can easily be extended to include linear dependency

of activity completion times such as sharing common resources with independent failure probabilities.

Denote cij to be the cost of using each unit of resource for the activity on the arc (i, j). Our goal

is to find a resource allocation to each activity (i, j) ∈ E that minimizes the total project cost while

ensuring that the probability we can complete the project within T days is at least 1− ε.

Proposition 5 For any ε0 and εij , ∀(i, j) ∈ E in (0, 1) such that

ε0 +
∑

(i,j)∈E
εij ≤ ε , (33)

if there exists measurable functions yi(z̃) for every node i satisfying

P (yn(z̃) ≤ T ) ≥ 1− ε0

P
(
yj(z̃)− yi(z̃) ≥ t̃ij

)
≥ 1− εij ∀(i, j) ∈ E

y1(z̃) = 0 ,

the probability that the project is finished within T days is at least 1− ε.

Proof : For any realization z of z̃, the project to can be finished within time period T if and only if

there exists yi for all nodes i such that the following inequalities are satisfied

yn ≤ T

y1 = 0

yj ≥ yi + tij(z) ∀(i, j) ∈ E .

Since y1(z̃) = 0, we have

P ( Project finished within T )

≥ P


{yn(z̃) ≤ T}

⋂

(i,j)∈E
{yj(z̃) ≥ yi(z̃) + t̃ij}




= 1− P


{yn(z̃) > T}

⋃

(i,j)∈E
{yj(z̃)− yi(z̃) < t̃ij}




≥ 1−

P

(
yn(z̃) > T

)
+

∑

(i,j)∈E
P

(
yj(z̃)− yi(z̃) < t̃ij

)

 (Bonferroni inequality)

≥ 1−

ε0 +

∑

(i,j)∈E
εij




≥ 1− ε .
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Therefore, a stochastic model to address the project management problem is as follows:

Z∗ = min c′x

s.t. P (yn(z̃) ≤ T ) ≥ 1− ε0

P
(
yj(z̃)− yi(z̃) ≥ (1 + z̃ij)bij − aijxij

)
≥ 1− εij ∀(i, j) ∈ E

y1(z̃) = 0

0 ≤ x ≤ x̄

x ∈ <|E|

y(z) ∈ <n ∀z ≤ z ≤ z̄,

(34)

Notice in the deterministic project management formulation, yi corresponds a feasible completion time

at node i.

Applying Theorem 6, we formulate the robust optimization approach as follows

Z∗r = min c′x

s.t. y0
n + Ω0h0 + r0′z̄ + s0′z ≤ T

‖u0‖∗ ≤ h0

u0
ij ≥ pij(yij

n − r0
ij) ∀(i, j) ∈ E

u0
ij ≥ −qij(yij

n + s0
ij) ∀(i, j) ∈ E

y0
j − y0

i ≥ bij − aijxij + Ωijhij + rij ′z̄ + sij ′z ∀(i, j) ∈ E

‖uij‖∗ ≤ hij ∀(i, j) ∈ E

uij
ij ≥ pij(bij + yij

i − yij
j − rij

ij + sij
ij) ∀(i, j) ∈ E

ukl
ij ≥ pij(y

ij
k − yij

l − rkl
ij + skl

ij ) ∀(i, j), (k, l) ∈ E , (i, j) 6= (k, l)

uij
ij ≥ −qij(bij + yij

i − yij
j − rij

ij + sij
ij) ∀(i, j) ∈ E

ukl
ij ≥ −qij(y

ij
k − yij

l − rkl
ij + skl

ij ) ∀(i, j), (k, l) ∈ E , (i, j) 6= (k, l)

y0
1 = 0, yij

1 = 0 ∀(i, j) ∈ E
0 ≤ x ≤ x̄

u0, uij , r0, rij , s0, sij ∈ <|E|+ ∀(i, j) ∈ E
h0, hij ∈ < ∀(i, j) ∈ E
x ∈ <|E|

y0,yij ∈ <n ∀(i, j) ∈ E .

(35)

26



0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Start Node 

End Node

Figure 2: Project management “grid” with height, H = 6 and width W = 7.

There are multiple ways of selecting ε0 and εij , (i, j) ∈ E so that the project will complete timely

with probability at least 1−ε. As indicated in Proposition 5, a sufficient condition is (33). A reasonable

way to select these values, ε0, εij , (i, j) ∈ E is to minimize the total budget of uncertainties for all the

constraints as follows
min Ω0(ε0) +

∑

(i,j)∈E
Ωij(εij)

s.t. ε0 +
∑

(i,j)∈E
εij ≤ ε,

where Ωe(εe) =
√−2 ln(εe). Solving the above optimization problem, we obtain ε0 = εij = ε

m+1 , for

all (i, j) ∈ E . Considering a project with 10, 000 jobs, to guarantee that the project will be completed

on time with probability 99%, we choose Ω = 5.26, which is essentially a small constant compared to

Ωmax =
√

m = 100.

For our computational experiment, we create a fictitious project with the activity network in the

form of H by W grid (see Fig. 2). There are a total of H ×W nodes, with the first node at the left

bottom corner and the the last node at the right upper corner. Each arc on the graph proceeds either

towards the right node or the upper node. We assume that every activity on arc has independent and
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H W m n Ω Z∗r Z∗w
Z∗r
Z∗w

4 4 24 16 3.95 511.05 576 0.89

5 5 40 25 4.07 856.01 960 0.89

6 6 60 36 4.17 1294.54 1440 0.90

3 3 12 9 3.77 269.82 288 0.94

3 4 17 12 3.86 367.06 408 0.90

3 8 37 24 4.05 519.69 888 0.59

3 12 57 36 4.16 587.09 1368 0.43

Table 4: Computation results for project management.

identical completion time. In particular, for all arcs (i, j),

P(z̃ij = z) =





0.6 if z = −0.06

0.3 if z = 0.04

0.1 if z = 0.24,

hence, zij = 0.06, z̄ij = 0.24 and we can determine numerically that pij = 0.1154, qij = 0.0917. We

assume that for all activities, aij = cij = 1, x̄ij = 24 and bij = 100. We also want high confidence (at

least 99%) that the completion time of the project is no more than 100(H +W −2), which is the average

completion time of any path with xij = 0 for all arcs. Therefore, additional resources are needed to

meet the desired confidence level of project completion.

In the worst case scenario, every activity will be delayed, that is z̃ij = 0.24 and (1+ z̃ij)bij = 124. In

this case, each activity on arc must be assigned to the maximum resource at xij = 24, so that t̃ij = 100

and all critical paths (longest paths) can meet the targeted completion time of 100(H + W − 2). Since

there are a total of m = H(W − 1) + W (H − 1) arcs on the H by W grid, the objective according to

the worst case scenario is Z∗w = 24m.

We use Euclidian norm to construct our uncertainty sets. Therefore the resultant model is an SOCP.

We solve the optimization model to optimality using SDPT3 [25] and display the results in Table 4.

Interestingly, the relative savings for using the robust model depends on the activity network. We

first note that when the activity network is a square, the relative cost savings hover around 10% and

somewhat indifferent to the size of the problem. In Fig. 3 we illustrate the optimal solution, the relative

amount of resource for each activity, by varying the thickness of the arcs on the grid. We can see that

except for the upper-left and lower-right activities, all other activities require almost full resources. As
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Figure 3: Project management solution for H = 6 and W = 6.

the activities are tightly connected, any delay in one activity can lead to a substantial delay in the entire

project. Hence, there is little leeway for cost savings without having to compromise the completion time.

In Fig. 4 we illustrate the solution on the grid for a rectangular activity graph. When the activity

network is more rectangular, we see that we only need to pay for a fraction of the worst case cost in

order to guarantee with high confidence that the project will be completed on time. It seems to suggest

that if there are more sequential activities and less parallel activities, the robust project management

can lead to substantial cost savings while guaranteeing high degree of confidence that the project will

complete on time.

7 Conclusions

With the new deviation measures, we are able to refine the descriptions of uncertainty sets by including

distributional asymmetry. This in turn enables us to obtain less conservative solutions while achiev-

ing better approximation to the chance constraints. We also use linear decision rules to formulate

multiperiod stochastic models with chance constraints as a tractable robust counterpart.

We also demonstrate that using Euclidian norm in the uncertainty set gives the least conservative
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Figure 4: Project management solution for H = 3 and W = 12.

solution for the same budget of uncertainty. With advances of second order cone solvers, we are able

to solve robust models of decent size. When integrality constraints are present, we propose using the

l1 ∩ l∞ norm because the robust counterpart remains linear and the increase in size over the nominal

problem is moderate. Hence, we feel that using the robust optimization approach to tackle certain types

of stochastic optimization problems can be both practically useful and computationally appealing.
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A Proof of Proposition 2

Let

X = {u : ‖u‖ ≤ Ω}

and

Y =
{
u : ∃v,w ∈ <N ,u = v −w, ‖v + w‖ ≤ Ω, v, w ≥ 0

}
.

It suffices to show that X = Y . For every u ∈ X, let

(vj , wj) =





(uj , 0) if uj ≥ 0

(0,−uj) if uj < 0
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Clearly, v,w ≥ 0 and vj + wj = |uj | for all j = 1, . . . , N . Since the norm is regular, we have

‖v + w‖ = ‖|u|‖ = ‖u‖ ≤ Ω,

hence, X ⊆ Y . Conversely, suppose u ∈ Y and hence, uj = vj − wj , for all j = 1, . . . , N . Clearly

|uj | ≤ vj + wj .

Therefore, since the norm is regular, we have

‖u‖ = ‖|u|‖ ≤ ‖v + w‖ ≤ Ω,

hence Y ⊆ X.

B Proof of Proposition 3

Observe that

Ω‖t‖∗ = max
N∑

j=1

max{aj , bj , 0}rj

s.t. ‖r‖ ≤ Ω.

(36)

Suppose r∗ is an optimal solution to (36). For all j ∈ {1, . . . , N}, let

vj = wj = 0 if max{aj , bj} ≤ 0

vj = |r∗j |, wj = 0 if aj ≥ bj , aj > 0

wj = |r∗j |, vj = 0 if bj > aj , bj > 0.

Observe that ajvj + bjwj ≥ max{aj , bj , 0}r∗j and wj + vj ≤ |r∗j | ∀j ∈ {1, . . . , N}. From Proposition 1(c)

we have ‖v + w‖ ≤ ‖r∗‖ ≤ Ω, and thus v,w are feasible in Problem (9), leading to

z∗ ≥
N∑

j=1

(ajvj + bjwj) ≥
N∑

j=1

max{aj , bj , 0}r∗j = Ω‖t‖∗

Conversely, let v∗, w∗ be an optimal solution to Problem (9). Let r = v∗ + w∗. Clearly ‖r‖ ≤ Ω and

observe that

rj max{aj , bj , 0} ≥ ajv
∗
j + bjw

∗
j ∀j ∈ {1, . . . , N}.

Therefore, we have

Ω‖t‖∗ ≥
N∑

j=1

max{aj , bj , 0}rj ≥
N∑

j=1

(ajv
∗
j + bjw

∗
j ) = z∗ .
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Regular Norms ‖z‖ ‖u‖∗ ≤ h References

l2 ‖z‖2 ‖u‖2 ≤ h [4]

Scaled l1
1√
N
‖z‖1

√
Nuj ≤ h,∀j ∈ {1, . . . , N} [8]

l∞ ‖z‖∞
∑N

j=1 uj ≤ h [8]

Scaled lp, p ≥ 1 min{N 1
2
− 1

p , 1}‖z‖p max{N 1
p
− 1

2 , 1}
(∑N

j=1 u
p

p−1

j

) p−1
p ≤ h [8]

l1 ∩ l∞ norm max{ 1√
N
‖z‖1, ‖z‖∞}

√
Np +

∑N
j=1 sj ≤ h

sj + p ≥ uj , ∀j ∈ {1, . . . , N}
p ∈ <+, s ∈ <N

+

[8]

Table 5: Representation of the dual norm for u ≥ 0

C Table of Dual Norm Representation

Table 5 list the common choices of regular norms, the representation of their dual norm inequalities,

‖u‖∗ ≤ h in which u ≥ 0 and the corresponding references.

D Deviation Measures for Asymmetric Distributions

Recently, general deviation measures are introduced and analyzed systematically in Rockafellar et al.

[22], in which they define deviation measures on L2(L,F , Q), where L is the sample space, F is a field of

sets in L and Q is a probability measure on (L,F). Among those requirements for a deviation measure,

positive homogeneity and subadditivity play a fundamental role. Careful analysis of the forward and

backward deviations defined in Section 3 reveals that these properties are also essential for Theorem 3

and Theorem 5, which suggests that it is possible to adapt the deviation measure definition of Rockafellar

et al. [22] to our setting.

For our purpose, we focus on a closed convex cone S of L2(L,F , Q). A deviation measure on the

closed convex cone S is a functional D : S → <+ satisfying the following axioms.

(D1) D(x̃ + c) = D(x̃) for any random variable x̃ ∈ S and constant c.

(D2) D(0) = 0 and D(λx̃) = λD(x̃) for any x̃ ∈ S and λ ≥ 0.

(D3) D(x̃ + ỹ) ≤ D(x̃) +D(ỹ) for any x̃ ∈ S and ỹ ∈ S.

(D4) D(x̃) > 0 for any nonconstant x̃ ∈ S, whereas D(c) = 0 for any constant c.
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Standard deviation, semideviations and conditional value at risk are some examples satisfying the

above deviation measure definition. For more details, see Rockafellar et al. [22]. Since in our model,

uncertain data are affinely dependent on a set of independent random variables, (D3) can be relaxed

for our purpose. In particular, we assume

(D3’) D(x̃ + ỹ) ≤ D(x̃) +D(ỹ) for any independent x̃ ∈ S and ỹ ∈ S.

In addition, to derive meaningful probability bounds against constraint violation, we prefer a deviation

measure with one of the following properties.

(D5) For any random variables x̃ ∈ S with mean zero, P (x̃ > ΩD(x̃)) ≤ fS(Ω) for some function fS

depending only on S such that fS(Ω) → 0 as Ω →∞.

(D5’) For any random variables x̃ ∈ S with mean zero, P (x̃ < −ΩD(x̃)) ≤ fS(Ω) for some function fS

depending only on S such that fS(Ω) → 0 as Ω →∞.

Assumption (D5) is associated with the upside or forward deviation while Assumption (D5’) is asso-

ciated with the downside or backward deviation. Of particular interest are functions with exponential

decay rate, i.e. fS(Ω) = O(e−Ω) or fS(Ω) = O(e−Ω2/2).

Notice that from Theorem 3, the forward (backward) deviation defined in Section 3 satisfies As-

sumptions (D1), (D2), (D3’), (D4) and (D5) (or (D5’)) with fS(Ω) = e−Ω2/2. In fact, Theorem 3 (b)

is even stronger than (D3’). However, as we already pointed out, the forward and backward deviations

may not exist for some unbounded distributions, such as exponential distributions. We now introduce

different forward and backward deviation measures, which are defined for more general distributions.

For a given κ > 1, define

Pκ(z̃) =
{

α : α ≥ 0,Mz̃−E(z̃)

(
1
α

)
≤ κ

}
, (37)

and

Qκ(z̃) =
{

α : α ≥ 0,Mz̃−E(z̃)

(
− 1

α

)
≤ κ

}
. (38)

Let

Ŝ+ = {z̃ : Mz̃(s) < ∞ for some s > 0},

and

Ŝ− = {z̃ : Mz̃(s) < ∞ for some s < 0},
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It is clear that Pκ(z̃) is nonempty if and only if z̃ ∈ Ŝ+ and Qκ(z̃) is nonempty if and only if z̃ ∈ Ŝ−.

Note that an exponentially distributed random variable has finite derivation measure pκ while not p∗.

We now show that a result similar to Theorem 3 holds for Pκ(z̃) and Qκ(z̃).

Theorem 7 Let x̃ and ỹ be two independent random variables with zero means such that px̃ ∈ Pκ(x̃),

qx̃ ∈ Qκ(x̃), pỹ ∈ Pκ(ỹ) and qỹ ∈ Qκ(ỹ).

(a) If z̃ = ax̃, then

(pz̃, qz̃) =





(apx̃, aqx̃) if a ≥ 0

(−aqx̃,−apx̃) otherwsie

satisfy pz̃ ∈ Pκ(z̃) and qz̃ ∈ Qκ(z̃). In other words, pz̃ = max{apx̃,−aqx} and qz̃ = max{aqx̃,−apx}.
(b) If z̃ = x̃ + ỹ, then (pz̃, qz̃) = (px̃ + pỹ, qx̃ + qỹ) satisfy pz̃ ∈ P(z̃) and qz̃ ∈ Q(z̃).

Proof : (a) This result directly follows from the definition.

(b) We only show the result for the forward deviation measure. The result for the backward deviation

measure follows from a similar argument. Notice that

Mz̃

(
1
pz̃

)
= Mx̃

(
1
pz̃

)
Mỹ

(
1
pz̃

)
[since x̃ and ỹ are independent ]

= Mx̃

(
1
px̃

px̃
pz̃

)
Mỹ

(
1
pỹ

pỹ

pz̃

)

≤
(
Mx̃

(
1
px̃

)) px̃
pz̃

(
Mỹ

(
1
pỹ

)) pỹ
pz̃ [Hölder’s Inequality]

≤ κ.

Thus, pz̃ = px̃ + pỹ ∈ P(z̃).

Theorem 8 Let pκ(z̃) = inf Pκ(z̃) and qκ(z̃) = infQκ(z̃). Then pκ satisfies (D1), (D2), (D3’), (D4)

and (D5) with fŜ+
(Ω) = κ exp(−Ω) and qκ satisfies (D1), (D2), (D3’), (D4) and (D5) with fŜ−(Ω) =

κ exp(−Ω).

Proof : We show the claim for pκ only. The result for qκ follows from a similar argument. It is clear

that (D1), (D2) and (D4) hold for pκ and (D3’) follows from Theorem 7 (b).

It remains to show (D5). Notice that if x̃ = 0, (D5) follows trivially for all Ω, px̃ ≥ 0. Otherwise,

observe that for all Ω ≥ 0,

P (x̃ > Ωpx̃) = P
(

x̃

px̃
> Ω

)
≤

E
(
exp

(
x̃
px̃

))

exp(Ω)
≤ κ exp(−Ω),
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where the first inequality follows from Chebyshev’s inequality and the second inequality follows from

the definition of px̃.

Parallel results to Theorem 4 can also be obtained. We would like to point out that all our results

hold for the deviation measures pκ and qκ with corresponding modifications. As we mentioned, pκ and

qκ can be applied for certain class of random variables, for instance exponential random variables, in

which p∗ and q∗ are not well defined. Of course, since Theorem 7 part (b) is weaker than Theorem 3

part (b), one can expect that the probability bound derived based on p∗ and q∗ is stronger than that

based on pκ and qκ, if both deviation measures are well defined. Thus, for simplicity of presentation,

we focus on the deviation measures p∗ and q∗ in this paper.
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